Summative Assessment-I
 Topper Sample Paper-8 MATHEMATICS CLASS IX

Time: 3 to $3 \frac{1}{2}$ hours
Maximum Marks: 80

GENERAL INSTRUCTIONS:

1. All questions are compulsory.
2. The question paper is divided into four sections

Section A: 8 questions (1 mark each)
Section B: 6 questions (2 marks each)
Section C: 10 questions (3 marks each)
Section D: 10 questions (4 marks each)
3. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks and 2 questions of four marks each.
4. Use of calculators is not allowed.

SECTION A

Q1. The value of 2.999.... in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$, is
(a) $\frac{2999}{1000}$
(b) $\frac{19}{10}$
(c) 3
(d) $\frac{26}{9}$

Q2. The value of k, if $y+3$ is a factor of $3 y^{2}+k y+6$ is
(a) 9
(b) -11
(c) 0
(d) 11

Q3. Which of the following cannot be the measurements of the three sides of a triangle
(a) $7 \mathrm{~cm}, 3.5 \mathrm{~cm}, 3.6 \mathrm{~cm}$
(b) $7 \mathrm{~cm}, 3.5 \mathrm{~cm}, 4.1 \mathrm{~cm}$
(c) $3.4 \mathrm{~cm}, 3.5 \mathrm{~cm}, 7 \mathrm{~cm}$
(d) $3.5 \mathrm{~cm}, 3.8 \mathrm{~cm}, 7 \mathrm{~cm}$

Q4. Given $\|\| m$, the value of y is:

(a) 20
(b) 100
(c) 40
(d) 80

Q5. If $f(z)=z^{2}-3 \sqrt{2} z-1$ then, $f(3 \sqrt{2})$ is equal to
(a) 6 $\sqrt{2}-1$
(b) 0
(c) $3 \sqrt{2}-1$
(d) -1

Q6. The area of a rectangle is $x^{2}+9 x+14$, what are the dimensions of rectangle if $x=2$.
(a) 14 and 2
(b) 6 and -6
(c) 9 and 4
(d) 18 and 2

Q7. The semi perimeter of a triangle with sides $32 \mathrm{~cm}, 30 \mathrm{~cm}$ and 30 cm is 46 cm . Its area is
(a) $106 \sqrt{6} \mathrm{~cm}^{2}$
(b) $204 \sqrt{7} \mathrm{~cm}^{2}$
(c) $36 \sqrt{161} \mathrm{~cm}^{2}$
(d) $32 \sqrt{161} \mathrm{~cm}^{2}$

Q8. The area of an isosceles triangle with base 10 cm and perimeter 36 cm is:
(a) 60 sq cm
(b) 65 sq cm
(c) $138 \sqrt{ } 6 \mathrm{sq} \mathrm{cm}$
(d) 360 sq cm

SECTION B

Q9. If $a=2+\sqrt{3}$, find the value of $a+\frac{1}{a}$.
Q10. How many integral zeroes do the polynomial $3 z^{3}+8 z^{2}-1$ have?
Q11. Simplify: $(-2 x+5 y-3 z)^{2}$
Q12. In given figure, $O D$ is the bisector of $\angle A O C, O E$ is the bisector of $\angle B O C$ and $O D$ is perpendicular to $O E$. Show that the points A, O and B are collinear.

In given figure, $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q$. $O S$ is another ray lying between rays OP and OR. Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-$ $\angle \mathrm{POS}$)

Q13. In given figure, $\mathrm{PQ}=\mathrm{PR}$ and $\angle \mathrm{Q}=\angle \mathrm{R}$. prove that $\mathrm{QS}=\mathrm{RT}$.

Q14. Plot the points $A(2,0), B(5,0), C(5,3)$ and $D(2,3)$. What figure is this? Write its one property.

SECTION C

Q15. Find the value of $x^{3}-8 y^{3}-36 x y-216$ when $x=2 y+6$.

OR

If a, b, c are all non-zero and $a+b+c=0$, prove that $\left(\frac{a^{2}}{b c}\right)+\left(\frac{b^{2}}{c a}\right)+\frac{c^{2}}{a b}=3$
Q16. Express $0 . \overline{001}$ as a fraction in simplest form.
Q17. If $\left(x+\frac{1}{x}\right)^{2}=3$, find $x^{2}+\frac{1}{x^{2}}$ where, $x>0$.

OR

If $x=1+\sqrt{2}$, find the value of $\left(x-\frac{1}{x}\right)^{3}$
Q18. Represent $\sqrt{5}$ on the number line.

OR

Represent $\sqrt{2.4}$ on the number line.
Q19. In given figure, DE\|QR and AP and BP are bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{RBA}$ respectively. Find $\angle A P B$.

TOPPER

SAMPLE PAPERS

Q20. The perimeter of a triangle is 50 cm . One side of the triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.
Q21. Prove that in an isosceles triangle the angles opposite to the equal sides are equal.
Q22. In given figure, $A B \| C D$, find the value of x.

Q23. Given ' n ' points such that no three of them are collinear, then how many lines can be drawn through them?
Q24. The bisector of the vertical $\angle A$ of an isosceles triangle $A B C$ meets the base $B C$ at D. If $A B=A C=5 \mathrm{~cm}, A D=3 \mathrm{~cm}$, Find the length of $B C$.

SECTION D

Q25. Without actual division, prove that $2 x^{4}+x^{3}-14 x^{2}-19 x-6$ is exactly divisible by $x^{2}+3 x+2$.

OR

If the polynomials $a z^{3}+4 z^{2}+3 z-4$ and $z^{3}-4 z+a$ leave the same remainder when divided by $z-3$, find the value of a.
Q26. Factorise : a) $x^{4}+\frac{1}{x^{4}}-2$
b) $\quad 2 x^{5}+432 x^{2} y^{3}$

Q27. In given figure, $\angle \mathrm{Q}>\angle \mathrm{R}, \mathrm{PA}$ is the bisector of $\angle \mathrm{QPR}$ and PM is perpendicular to $Q R$. Prove that $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$

OR
In the given figure, $A B C$ is a triangle in which $A B=A C$. Side $B A$ is produced to D such that $A B=A D$. Prove that $\angle B C D=90^{\circ}$.

Q28. Factorise : $\quad x^{3}+13 x^{2}+32 x+20$
Q29. If the bisectors of angles $\angle \mathrm{B}$ and $\angle \mathrm{C}$ of a triangle ABC meet at a point O , then, prove that $\angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle \mathrm{~A}$.
Q30. In $\triangle A B C$, points D and E are on side $B C$ such that $B D=C E$ and $A D=A E$. Prove that $\triangle A D B$ is congruent to $\triangle A E C$. Is $\angle A B C=\angle A C B$? Why?

Q31. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$. Show that $\angle A>\angle C$ and $\angle B>\angle D$.

SAMPLE PAPERS

Q32. Find the value of $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}$
Q33. Find $x^{3}+y^{3}$ when $x=\frac{1}{3-2 \sqrt{2}}$ and $y=\frac{1}{3+2 \sqrt{2}}$
Q34. Find the area of the triangle formed by $A(0,4), B(0,0), C(3,0)$.

