

Summative Assessment-I Topper Sample Paper - 10 MATHEMATICS CLASS IX

Time: 3 to $3\frac{1}{2}$ hours

Maximum Marks: 80

GENERAL INSTRUCTIONS:

- 1. All questions are compulsory.
- 2. The question paper is divided into four sections

Section A: 8 questions (1 mark each)

Section B: 6 questions (2 marks each)

Section C: 10 questions (3 marks each)

Section D: 10 questions (4 marks each)

- 3. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks and 2 questions of four marks each.
- 4. Use of calculators is not allowed.

SECTION – A

Q1. Which of the following is an irrational number?

(A)
$$(\sqrt{5})^2$$

(B) $(\sqrt{5}-1)+(1-\sqrt{5})$
(C) $\frac{\sqrt{5}}{\sqrt{5}}$
(D) $\sqrt{\sqrt{25}}$
Q2.Evaluate: $5^3 - 2^3 - 3^3$
(A) 60
(B) 90
(C) 120
(D) 90

SAMPLE PAPERS

DDER

Q.3 An exterior angle of a triangle is 80° and two interior opposite angles are equal. Measure of each of these angle is:

(A) 120° (B) 40° (C) 100° (D) 60° Q4. The sides of a scalene triangle are in the ratio 3:5:7. If the perimeter of the triangle is 60 cm , then its area is :

- (A) 40 sq cm
- . (́B) 60√3 sq cm
- (C) 160√3 sq cm
- (D) 480√19 sq cm

Q.5 In figure -1, value of x is:

Figure - 1

Q.6 Heron's formula is:

(A)
$$\Delta = \sqrt{s(s+a)(s+b)(s+c)}$$

(B) $\Delta = \sqrt{(s-a)(s-b)(s-c)}$
(C) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$, $s = a + b + c$
(D) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$, $2 = a + b + c$

- Q.7 Zero of the polynomial p (x) where p (x) = ax, $a \neq 0$ is :
 - (A) 1 (B) a (C) 0 (D) $\frac{1}{a}$
- Q.8 If p (x) = 2 + $\frac{x}{2} + x^2 \frac{x^3}{3}$ then p (-1) is :

SECTION -B

- Q.9 Express 2. $\overline{9.3}$ in the form of $\frac{p}{q}$ where p and q are integers and $q \neq o$.
- Q.10 If x = 3 + 2 $\sqrt{2}$ then find the value of $\left(x \frac{1}{x}\right)^3$.
- Q.11 If 2x + 3y = 8 and xy = 4 then find the value of $4x^2 + 9y^2$.

OR

If $x^2 + \frac{1}{x^2} = 38$, then find the value of $\left(x - \frac{1}{x}\right)$.

Q.12 In figure -2, lines AB and CD intersect at O. If \angle AOD: \angle DOC= 4:5 then find \angle COB.

Figure - 2

Q.13 In figure -3 if PQ||RS then find \angle SOR

Q.14 In figure -4, \triangle ABC and \triangle ABD are equilateral triangles. Find coordinates of point C and D.

SECTION - C

Q.15 If $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$ then find the value of a and b.

OR

Simplify:
$$\frac{3\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}}$$

Q.16 If $x = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$ and $y = \frac{3 + 2\sqrt{2}}{3 - 2\sqrt{2}}$ then find the value of x + y.

Q.17 Find the value of $x^3 + y^3 - 12xy + 64$ when x + y = -4.

OR

If x = 2y + 6 then find the value of $x^3 - 8y^3 - 36xy - 216$.

- Q.18 Factorize: 27 (x+y)³-8 (x-y)³.
- Q.19 Using suitable identity evaluate (998)³.
- Q.20 A traffic island is a parallelogram with perimeter 84m. One of the sides is 24m and a diagonal is 30 m. Find the cost of surfacing at the rate of Rs 200 per sq m.
- Q.21 In figure -5, if BE is bisector of $\angle ABC$ and CE is bisector of $\angle ACD$, then show that $\angle BEC = \frac{1}{2} \angle BAC$.

Figure - 5

- Show that in a right angled triangle, the hypotenuse is the longest Q.22 side.
- In figure -6, if AB||CD, EF \perp CD and \angle GED = 126° then find \angle AGE, \angle GEF and \angle FGE. Q.23

Q.24 In an isosceles triangle ABC with AB = AC, BD and CE are two medians. Prove that BD = CE.

OR

In figure -7, if PS= PR, \angle TPS = \angle QPR then prove that PT = PQ.

Figure - 7

SECTION - D

Q.25 Prove that:

 $2x^{3}+2y^{3}+2z^{3}-6xyz = (x+y+z) [(x-y)^{2} (y-z)^{2}+ (z-x)^{2}]$ hence evaluate

2 $(7)^3 + 2(9)^3 + 2(13)^3 - 6(7)$ (9) (13). Q.26 Factorize: $2y^3 + y^2 - 2y - 1$.

OR

If $x + \frac{1}{x} = 5$ then evaluate $x^6 + \frac{1}{x^6}$.

Q.27 In figure -8, If PQ \perp PS, PQ||SR, \angle SQR = 28° and \angle QRT = 65° then find the values of x and y.

- Q.28 Prove that sum of the angles of a hexagon is 720°.
- Q.29 In a triangle \triangle PQR, PR > PQ and PS is the bisector of \angle QPR. Prove that \angle PSR > \angle PSQ.
- Q.30 In figure 9, two sides AB and BC and the median AM of \triangle ABC are respectively equal to sides DE and EF and the median DN of \angle DEF. Prove that \triangle ABC $\cong \angle$ DEF.

Figure - 9

OR

In figure – 10, PS is the bisector of \angle PQR and PT \perp QR. Show that

$$\angle TPS = \frac{1}{2} (\angle Q - \angle R)$$

Q.31 If $a + \sqrt{b} = \frac{\sqrt{13} - \sqrt{11}}{\sqrt{13} + \sqrt{11}} + \frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}}$, find the value of a and b.

Q.32 Express the following in the form $\frac{p}{q}$, where p and q are integers and

- $q \neq 0.$ (a) $0.\overline{001}$ (b) $2.\overline{3}$
- Q.33 Factorise: $x^4 13x^2 + 36$.

Q.34 Draw the quadrilateral formed by the points P(3, 0), Q(-4, 0), R(0, 5) and S(0, -7).

