TOPPER

Summative Assessment-I
 Topper Sample Paper - 10
 MATHEMATICS CLASS IX

Time: 3 to $3 \frac{1}{2}$ hours
Maximum Marks: 80

GENERAL INSTRUCTIONS:

1. All questions are compulsory.
2. The question paper is divided into four sections

Section A: 8 questions (1 mark each)
Section B: 6 questions (2 marks each)
Section C: 10 questions (3 marks each)
Section D: 10 questions (4 marks each)
3. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks and 2 questions of four marks each.
4. Use of calculators is not allowed.

SECTION - A

Q1.Which of the following is an irrational number?
(A) $(\sqrt{5})^{2}$
(B) $(\sqrt{5}-1)+(1-\sqrt{5})$
(C) $\frac{\sqrt{5}}{\sqrt{5}}$
(D) $\sqrt{\sqrt{25}}$

Q2.Evaluate: $5^{3}-2^{3}-3^{3}$
(A) 60
(B) 90
(C) 120
(D) 90

SAMPLE PAPERS

Q. 3 An exterior angle of a triangle is 80° and two interior opposite angles are equal.

Measure of each of these angle is:
(A) 120°
(B) 40°
(C) 100°
(D) 60°

Q4. The sides of a scalene triangle are in the ratio 3:5:7. If the perimeter of the triangle is 60 cm , then its area is :
(A) 40 sq cm
(B) $60 \sqrt{ } 3 \mathrm{sq} \mathrm{cm}$
(C) $160 \sqrt{ } 3 \mathrm{sq} \mathrm{cm}$
(D) $480 \sqrt{ } 19 \mathrm{sq} \mathrm{cm}$
Q. 5 In figure -1, value of x is:

Figure-1
(A) 20°
(B) 40°
(C) 30°
(D) 50°
Q. 6 Heron's formula is:
(A) $\Delta=\sqrt{s(s+a)(s+b)(s+c}$
(B) $\Delta=\sqrt{(s-a)(s-b)(s-c)}$
(C) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}, s=a+b+c$
(D) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}, 2 s=a+b+c$
Q. 7 Zero of the polynomial $p(x)$ where $p(x)=a x, a \neq 0$ is:
(A) 1
(B) a
(C) 0
(D) $\frac{1}{a}$
Q. 8 If $p(x)=2+\frac{x}{2}+x^{2}-\frac{x^{3}}{3}$ then $p(-1)$ is:

TOPPER

(A) $\frac{15}{6}$
(B) $\frac{17}{6}$
(C) $\frac{1}{6}$
(D) $\frac{13}{6}$

SECTION -B

Q. 9 Express 2. $\overline{9.3}$ in the form of $\frac{\mathrm{p}}{\mathrm{q}}$ where p and q are integers and $\mathrm{q} \neq \mathrm{o}$.
Q. 10 If $x=3+2 \sqrt{2}$ then find the value of $\left(x-\frac{1}{x}\right)^{3}$.
Q. 11 If $2 x+3 y=8$ and $x y=4$ then find the value of $4 x^{2}+9 y^{2}$.

OR

If $x^{2}+\frac{1}{x^{2}}=38$, then find the value of $\left(x-\frac{1}{x}\right)$.
Q. 12 In figure -2 , lines $A B$ and $C D$ intersect at O. If $\angle A O D: \angle D O C=4: 5$ then find $\angle C O B$.

Figure-2
Q. 13 In figure -3 if PQ||RS then find $\angle S O R$

Figure-3
Q. 14 In figure -4, $\triangle A B C$ and $\triangle A B D$ are equilateral triangles. Find coordinates of point C and D.

SAMPLE PAPERS

Figure-4

SECTION - C

Q. 15 If $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}$ then find the value of a and b.

OR

Simplify: $\frac{3 \sqrt{2}}{\sqrt{6}-\sqrt{2}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$
Q. 16 If $x=\frac{\sqrt{3}-1}{\sqrt{3}+1}$ and $y=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$ then find the value of $x+y$.
Q. 17 Find the value of $x^{3}+y^{3}-12 x y+64$ when $x+y=-4$.

OR
If $x=2 y+6$ then find the value of $x^{3}-8 y^{3}-36 x y-216$.
Q. 18 Factorize: $27(x+y)^{3}-8(x-y)^{3}$.
Q. 19 Using suitable identity evaluate (998) ${ }^{3}$.
Q. 20 A traffic island is a parallelogram with perimeter 84 m . One of the sides is 24 m and a diagonal is 30 m . Find the cost of surfacing at the rate of Rs 200 per sq m .
Q. 21 In figure -5, if BE is bisector of $\angle \mathrm{ABC}$ and CE is bisector of $\angle \mathrm{ACD}$, then show that $\angle B E C=\frac{1}{2} \angle B A C$.

Figure - 5
Q. 22 Show that in a right angled triangle, the hypotenuse is the longest side.
Q. 23 In figure -6, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$ then find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Figure-6
Q. 24 In an isosceles triangle $A B C$ with $A B=A C, B D$ and $C E$ are two medians. Prove that $B D=C E$.

OR

In figure -7, if $\mathrm{PS}=\mathrm{PR}, \angle \mathrm{TPS}=\angle \mathrm{QPR}$ then prove that $\mathrm{PT}=\mathrm{PQ}$.

Figure-7

SECTION - D
Q. 25 Prove that:

SAMPLE PAPERS

$2 x^{3}+2 y^{3}+2 z^{3}-6 x y z=(x+y+z)\left[(x-y)^{2}(y-z)^{2}+(z-x)^{2}\right]$ hence evaluate
$2(7)^{3}+2(9)^{3}+2(13)^{3}-6(7)(9)(13)$.
Q. 26 Factorize: $2 y^{3}+y^{2}-2 y-1$.

OR

If $x+\frac{1}{x}=5$ then evaluate $x^{6}+\frac{1}{x^{6}}$.
Q. 27 In figure -8, If $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$ then find the values of x and y.

Figure-8
Q. 28 Prove that sum of the angles of a hexagon is 720°.
Q. 29 In a triangle $\triangle \mathrm{PQR}, \mathrm{PR}>\mathrm{PQ}$ and PS is the bisector of $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>$ $\angle P S Q$.
Q. 30 In figure -9, two sides $A B$ and $B C$ and the median $A M$ of $\triangle A B C$ are respectively equal to sides $D E$ and $E F$ and the median $D N$ of $\angle D E F$. Prove that $\triangle A B C \cong \angle D E F$.

Figure - 9

OR

In figure $-10, \mathrm{PS}$ is the bisector of $\angle \mathrm{PQR}$ and $\mathrm{PT} \perp \mathrm{QR}$. Show that
$\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$

Figure - 10
Q. 31 If $a+\sqrt{b}=\frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}+\sqrt{11}}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$, find the value of a and b.
Q. 32 Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
(a) $0 . \overline{001}$
(b) $2 . \overline{3}$
Q. 33 Factorise: $x^{4}-13 x^{2}+36$.
Q. 34 Draw the quadrilateral formed by the points $P(3,0), Q(-4,0), R(0,5)$ and $S(0,-7)$.

